revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

M.Tech. Degree Examination, Dec.2014/Jan.2015 Design of Analog and Mixed Mode VLSI Circuits

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. (Derive and explain I/V characteristics of MOSFET.

(12 Marks)

- b. Explain the following second order effects of MOSFET: i) Body effect; ii) Channel length modulation. (08 Marks)
- 2 a. Explain common-source stage with resistive load and draw small signal model of common source stage including the transistor o/p resistance. (10 Marks)
 - b. Explain source follower with its input-output characteristics and also draw small signal equivalent circuit of source follower. (10 Marks)
- 3 a. Explain miller effect using Miller's theorem.

(06 Marks)

b. Draw and explain high frequency model of a cascade stage.

(08 Marks)

c. Neglecting channel-length modulation, compute the transfer function of the common-gate stage shown in Fig.Q.3(c). (06 Marks)

Fig.Q.3(c)

- 4 a. Explain differential pair with MOS loads and explain how voltage gain increased for the same. (08 Marks)
 - b. Explain cascade current mirrors.

(12 Marks)

a. In the circuit of Fig.Q.5(a), assume the Op-Amp is a single-pole voltage amplifier. If V_{in} is a small step calculate the time required for the o/p voltage to reach within 1% of its final value. What unity-gain bandwidth must the op-amp provide if $1 + R_1/R_2 \approx 10$ and the settling time is to be less than 5ns? For simplicity, assume the low-frequency gain is much greater than unity. (10 Marks)

Fig.Q.5(a)

b. Explain folded cascade op-amp with cascade PMOS loads and determine the small signal voltage gain. (10 Marks)

U	b.	What is PLL? Explain basic PLL topology with neat diagrams.	(10 Marks) (10 Marks)
7		Explain the following: i) Negative TC voltage; ii) Positive TC voltage.	(10 Marks)
	b.	Explain switched capacitor integrator with neat diagrams.	(10 Merits)
8	a.	Explain DAC specification with figures.	(10 Marks)
	b.	Explain flash ADC architecture with the help of block diagram and principle of conversion	

b. Explain flash ADC architecture with the help of block diagram and principle of conversion with an example for 3 bits.

(10 Marks)

2 of 2